Resolving cancer heterogeneity
by single cell sequencing



Nothing in biology makes sense
except in light of evolution

“Tree” type of thinking of Genomics
They are different, they are also related




Cancer is a game of cell evolution
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Single Cell Genomics Analysis



Single Cell Genomics

Sequencing the Single Cell Genome by Next Generation
Sequencing (NGS)

Cell
isolation
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Digested Tissues Single Cell
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Single Cell Genomics

Single Cell Isolation

* Digest the tissue and
randomly select the
single cells by the
inverted microscope and
microcapillary pipetting.




Single Cell Genomics

reaction components
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polymerization from new primers bind to
new strands newly formed DNA

strand displacement

Whole-genome amplification (WGA) based on
multiple-displacement amplification with the phi29
enzyme
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Single Cell Genomics

Method Evaluation

® Sample set: single cell from the first Asian genome
donor (YH); and control form the same tissue.

® Data set : 13X and 18X for two replications

Single cell 1 Single cell 2 Control
Raw data (Gb) 35.47 47.99 48.72
Average depth 13.32 17.82 18.03
Genome coverage (%) 95.77 94.46 99.91

Hou et al. Cell 2012



Single Cell Genomics

Method Evaluation
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Sequencing depth of chromosome 1

* No obvious genome wide coverage limitation by single cell
sequencing



Single Cell
Genomics

Method
Evaluation

* No obvious genome
wide coverage
limitation; GC
content does impact
the even distribution
of WGA data.
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Single Cell Genomics
WGA Artifacts Rate Estimate

(Calculated by comparing consensus sequence
between YH single cell and YH million cells data )

FDR (False positive

Sample ID
mutation) rate
Single cell 1 7.2E-5
Single cell 2 8.9E-5
Note:

1. FDR (False discovery rate) = Error SNP # in single cell/confident homo.
SNP #in control;

2. Here FDR contains WGA error, sequencing error, and mapping error;

3. WGA error: E-5~E-6 (J. Guillermo Paez, et al. Nucleic Acids Research, 2004, Vol. 32,
No.9e71)



Single Cell Genomics
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FN & FDR sites do not show specific base type bias beyond mutations



Single Cell Genomics

97%

A / Metabolic process Biological regulation

m Multicellular organismal process m Cell communication

= Amplification-failures genes m Response to stimulus m Localization
2 All captured genes ® Developmental process m Cellular component orgnization
® Death Cell proliferation
m Reproduction m Multi-organism process
Growth m Unclassified

Pie Chart of Distribution of Biological Categories of Genes (GO) with Amplification Failure

Amplification failure genes do not show preference on different

biological processes
14



Single Cell on Cancer Genomics



Blocks

e Samples limitation

e Heterogeneity

e Cancer Progression

Questions

Where i1s the solutions for rare
and rarity cancer samples?

How can we differentiate such a
mixed tumor tissues?

What type of the genetic changes
1s relevant to cancer
development?



Cancer is a game of cell evolution
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A Lesson From
High Altitude Adaption

What is the genetic basis of difference in gifted ability to adapt
for high altitude?

X.Yi, et.al. 2010. Science 329:75-8.
18
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A Lesson From
High Altitude Adaption

50 Tibetan Individuals 40 Han Chinese Individuals

What 1s the genetic basis of difference in gifted
ability to adapt for high altitude?

Xin Yi,et al Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude.
Science. 2010 July; 329(5987): 75-78



A Lesson From
High Altitude Adapt
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A Lesson From
High Altitude Adaption

* SNP information shows that Tibetan and Han
Chinese are genetically very similar and the
evolution history was revealed as follow:
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A Lesson From
High Altitude Adaption

* Here are the power of Population Branch
Statistic (PBS) and Genes with significant PBS
selection signals

0.6
1
—

LEPAST1
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Tibetan branch statistic

0.2

0.0

Number of SNPs per gene




A Lesson From
High Altitude Adaption

$2°.355%%

50 Tibetan Individuals 40 Han Chinese Individuals

The gene (EPAS1) showing strongest selection signal (up to 80% frequency change
in allele distribution)

Function further validated in
-Association with blood hemoglobin level
-Expression level difference in placenta



Apply Population Analysis to Cancer
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Stem

Heterogeneous individual population cells

Phylogenic structure
Normal tissue with
random “neutral”
somatic mutations

Evolution history inference
Key genes to hypoxia!

e

Heterogeneous cell population

Accumulation of some
somatic mutations
become “beneficial”

S

Cell lineage analysis

Tumor tissue
development

Development history inference

Key genes to tumor?

- ®




Four Cases from 1,000 Single Primary Tumor Cells
Sequencing

Cancer type Sample ID Single cell number Gender Description

Cancer cell #/control cell
#(sequencing available

number)
Essential a JAK2-negative patient;
thrombocytosis (ET) il g e e i published on Cell, 2012
a VHL-wild type patient;
. ’ | cell large patient cohort also
ear cell renal ce CCRCC-1 20/6 (20/6) M analyzed (Guo et al.,

RCC-1
cancer (cc ) 2011); published on Cell,

2012
a muscle invasive type
patient; large patient
BTCC 59/16 (47/11) M cohort also analyzed (Gui
et al., 2011); submitted on
Giga-Science

Bladder transitional cell
cancer (BTCC)

large patient cohort also
Colon cancer Colorectal 106/30 (64/6) M analyzed (unpublished);
manuscript in preparation



Four Cases from 1,000 Single
Primary Tumor Cells Sequencing

Data Sets

Sample name

Coverage(X SEM)

Depth(Z SEM)

Cancer cell #/
normal cells #

ET

CCRCC-1

BTCC

Colorectal

73.86% 1 5.08%

90.07% +=1.93%

85.17% +1.41%

78.27%13.39%

24.571£2.73

32.00+7.06

40.2312.21

15.6511.05

53/8
20/6
47/11

64/6

Notes: All refer to target region of Agilent. We also sequenced the normal tissue (100X
exome) or peripheral blood cells (30X exome), and cancer tissues (100X exome) to make

guality control.



Four Cases from 1,000 Single

. Cancer Cells Sequencing
Analysis pipeline

. Population Progression
> SNP calling >> analysis >> inferring >

Observe the somatic mutation pattern in single cell level

» Somatic mutation statistics
> Derived allelic frequency spectrum of somatic mutations
» Mutation prevalence of single cell level in different cancer

» Somatic mutation types of single cell level in different cancer

» Cancer-mutated genes

> Functional validation



Four Cases from 1,000 Single
Primary Tumor Cells Sequencing

Essential Thrombocythemia

Myeloproliferative neoplasm

is a kind of hematopoietic
tumours that originate from
the genetically variations
contained hematopoietic stem
cells or progenitors and lead

to abnormal differentiation

and myelopoiesis

A Wright's stained bone marrow aspirate smear of a JAK2-negative ET patient

28



Heterogeneity:

Four Cases from 1,000 Single

Tumor Cells Sequencing

Essential Thrombocythemia
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Somatic allele frequency between single cell sequencing and millions of cells

shows consistency;

PCA analysis distinguish cancer and normal cells apparently



Four Cases from 1,000 Single

Heterogeneity: Tumor Cells Sequencing
Renal Cancer (ccRCC-1)
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Phylogenetic analysis shows three “cancer” cells present among normal
cells, and also showed the homogeneity of renal cancer (no obvious
subpopulations were observed)



Four Cases from 1,000 Single

Progression: Tumor Cells Sequencing
Essential Thrombocythemia
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Comparing the simulation of somatic mutated allele frequency and our data
.shows the potential monoclonal origin of this kind of disease.



Four Cases from 1,000 Single

Progression: Tumor Cells Sequencing
Bladder Cancer (BTCC)
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This indicates that this TCC is very likely to originate from only
_ one ancestral tumour cell with heterozygous mutations

o
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Progression:

Bladder Cancer (BTCC)

The tumour cells could be
classified into 3

identifiable subclones

with different genetic
mutational signatures

with 3 different groups of A
genes (A, B, C); N
represents normal cells
here. N

Mutant allele frequency °* 1
in cancer tissue
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Four Cases from 1,000 Single

Progression: Tumor Cells Sequencing
Bladder Cancer (BTCC)
Normal growth i Cancer progression
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The tumour evolution inferred by the heatmap
34



Four Cases from 1,000 Single

° u
Progression: Tumor Cells Sequencing
Bladder Cancer (BTCC)
Chr 11
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In Clone B, ATM is specifically mutated and found recurring in

5 other TCC patients in the patient cohort. It is a known
tumour suppressor that plays a key role as a cell cycle
checkpoint kinase in response to DNA damage and is a
regulator of a wide variety of downstream proteins (Rotman
and Shiloh 1998; Branzei and Foiani 2008). Defects in this
gene could increase mutation rate and genome instability and

facilitate tumour progression



Four Cases from 1,000 Single
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* Clone-C-specific mutated genes COL6A3 and KIAA1958 both

recurred in 4 additional patients in the patient cohort.
COL6A3 is reported to have significant changes in expression
level in tumour tissue(Smith, Culhane et al. 2009) and is a
subunit of collagen 1V, a cancer biomarker(Ohlund, Lundin et

al. 2009). The KIAA1958 gene encode a unknown protein.



Four Cases from 1,000 Single

Key Mutations Tumor Cells Sequencing
Essential Thrombocythemia
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Driver prediction of the non-synonymous somatic mutations: Q-score was
calculated according to a modified method by (Youn and Simon 2011). Genes
with Q-score more than 1 were identified as key genes.



Four Cases from 1,000 Single

Key Mutations Tumor Cells Sequencing
Essential Thrombocythemia

G e n e Mutation Monoclone- Functional Analyses

Name Type origin Gene

SESN2 Missense Yes SESN2 encoded a member of the sestrin family of
SESN1-related proteins and was an antioxidant
activated by p53. Mutation in SESN2 may lead to lack
of DNA repair and damage prevention

ST13 Nonsense No ST13 encodes an Hsc70-interacting protein in
controlling the activity of regulatory proteins such as
steroid receptors and regulators of proliferation or
apoptosis. Mutation in ST13 may contribute to loss
the control of apoptosis and lead to abnormal
proliferation.

NTRK1 Missense No A known oncogene, mutation in NTRK1 may
contribute to sustained angiogenesis and cell
proliferation

ABCB5 Missense No Up-regulation of ABCB5 was responsible for
multidrug resistance in several cancers

Key genes with known function and correlation with cancer.



Key Mutations
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Four Cases from 1,000 Single
Key Mutations Tumor Cells Sequencing

Renal Cancer (ccRCC-1)

Table 2. Key Genes Identified in This Patient

P Value® Mutant Allele
Patient (Passenger Frequency in Mutant Cell
Gene Name Mutations Prevalence (%)* Probability) Cancer Tissue Number Mountain/Hill®
AHNAK g.chr11:62042132G > A; p.P5445 > S 5% 9.29x 1077 20% 12 M
LRRK2 g.chr12:38985956A > G; p.112%4 >V 4% 428 x 1074 8% 8 H
SRGAP3 g.chr3:9041948T > A; p.R535* 2% 292 x 107" 34% 16 M
USP6 g.chr17:4976948C > G; p.T72 >R 2% 3.26 x 107" 1.99% 3 H

*Patient prevalence means the mutant genes recurred in the 99 ccRCC patients (including this patient); M/H represents mountain or hill gene.
®Significance of the observed mutation rate over the expected mutation rate in Guo et al. (2012).

Thanks to the large Chinese ccRCC patient cohort data, we compare
the mutations in this patient and mutations in the large patient

cohort, and found these recurrently genes.



Four Cases from 1,000 Single

Key Mutations TUmMmo lls Sequencin
y Renal Cancer(cc%gc-ﬁ 9 9

USP6

LRRK2 /'

e

o Relative 4
SRGAP3 Mutation Highlighted Mountain Genes

/ Frequency
' Highlighted Hill Genes

Mountain Gene

Hill Genes

Mutated genes landscape: mountain (tissue common mutation) and
hill(cell specific mutation) genes;



Four Cases from 1,000 Single

Key Mutations Tumor Cells Sequencmg
Colorectal
Mutation |
Frequency
/TPBQ Mutation in Single
Cells

\ Frequency
in 21 Colon
\ Cancers
C12A5
7

N SLC12A5
AN

Thanks to the large colon cancer cohort data, we compare the mutations in this patient
and mutations in the large patient cohort, and found recurrent genes which may play

important roles in this individual.



Four Cases from 1,000 Single
Tumor Cells Sequencing

Functional analysis Colorectal
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SLC12A45 was upregulated 1n colon cancer cell lines



Four Cases from 1,000 Single

Colorectal Tumor Cells Sequencing
Construction of wild-type and mutant SLC12A45 expression
Functional analysisvector by site-directed mutagenesis

SLC12A5 , , , | ,
Identified by single-cell sequencing Identified by exome sequencing
Amino Acid Permease Domain Amino Acid Permease Domain H7 6 8L R9 2 6W
™ ™ ™ ™ ™ T™ ™ ™ ™ 1116 aa
| T T T T | T T T T l T T T T | T T T T I
0 250 500 750 1000
TM - Transmembrane region

TAACCAAGAATGAG[E|GGGAGC GGG TAACCAAGAAT GAG[TIc GGAGC GGG

210 220 60 70

SCLI2A5-WT SCLI2A5-Mut



Four Cases from 1,000 Single Tumor Cells

Sequencing

mRNA & protein expression of SLCI2A5 in colon cancer cells transfected
Colorectal with WT and mutant SLC12A45-expressing plasmid

Functional analysis

RT-PCR

SLCI2A5

£ -actin

Western blot
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Four Cases from 1,000 Single Tumor Cells

Sequencin
Colorectal Mutant SLC12A5 promoted colony formation 9 9
SLCI2A5- SLCI2A5- SLCI2A5- SLCI2A5-

Mut Mut
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Colorectal Four Cases from 1,000 Single
Functional analysis Tumor Cells seque"Cing

Mutant SLC12A45 promoted colon cancer cell proliferation

-+ SW480/SLC12A5-WT -+ SW1116/SLC12A5-WT
5o =+ SWA480/SLC12A5-Mut 44 -+ SW1116/SLC12A5-Mut
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D D
© ©
£ c
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S S
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Time(hours) Time(hours)

SW480 (Stable transfection) SW 116 (Stable transfection)



Four Cases from 1,000 Single Tumor Cells Sequencing

Colorectal swaiso- SW480- SWI116- SWII16-
SLCI2A5-WT SLCI12A5-Mut . SLCI2A5-WT  SLCI2A5-Mut
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Four Cases from 1,000 Single
Tumor Cells Sequencing

Functional analysis

Colorectal

* A novel oncogenic mutation in SLC12A45 with
growth-promoting and anti-apoptotic function

was 1dentified



Four Cases from 1,000 Single
Tumor Cells Sequencing
Summary

 We successfully infer the intratumoral heterogeneity and
progression pattern from both blood tumor and solid tumor by

single-cell exome sequencing;

 We identified key mutations and genes using independent

methods in an individual tumor;

* OQOur results indicate the further application of single cell

sequencing on cancer personalized medicine and target

therapy.



Life is a Game of Cell Evolution
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Detection Resolution

T T

40 cells (median: 10594.5bp)

50

Count

Cell

0 10 20 30 40 50
Size of Interval (kb)

50% of events resolved to within 10.5kb
80% of events resolved to within 40kb

1 1 1 | 1 1 | 1
o 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

Fraction of events overlapping hotspots

* 42.2% of events overlap known hotspots,
vs 23.4% overlapping ‘coldspots’ (p<0.001).

e Cannot reject null hypothesis of uniform
hotspot usage across cells.
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* Researchers have long sought a way to determine the amount of recombination
that occurs in humans, and they have come up with several indirect ways to
measure it in families or in populations.

 single-cell sequencing provides a window on recombination, the process by which
matching chromosomes exchange pieces of their DNA during cell division.
Recombination helps generate genetic diversity by putting various versions of
genes together in new combinations.



Life is a Game of Cell -
Evolution
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